Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 42(3): 1136-1140, July-Sept. 2011. ilus
Article in English | LILACS | ID: lil-607545

ABSTRACT

The effect of several nutritional and environmental parameters on Penicillium purpurogenum growth and sacharogenic amylase production was analyzed. High enzyme levels (68.2 U mg-1) were obtained with Khanna medium at initial pH 6.0, incubated at 30ºC for 144 hours. The optimum pH and temperature activities were 5.0 and 65ºC, respectively. The enzyme presented a half-life (t50) of 60 min, at 65ºC. Only glucose was detected after 24 hours of reaction using soluble starch as substrate.


Subject(s)
Amylases/analysis , Fermentation , Penicillium/enzymology , Enzyme Activation , Methods , Methods
2.
Electron. j. biotechnol ; 14(2): 2-2, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-591932

ABSTRACT

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14 percent recovery. The native molecular mass of the glycoprotein (12 percent of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55ºC and 4.5. The enzyme was stable for more than 1 hr at 50ºC and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80 percent of activity after storage at 4ºC by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn2+, Mg2+ and Co2+, and inhibited by Cu2+, Hg2+ and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. Kd and Vmax values were 18 mM and 189 U/mg protein using sucrose as substrate.


Subject(s)
Aspergillus/enzymology , beta-Fructofuranosidase/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Substrates for Biological Treatment , Sucrose , Temperature , beta-Fructofuranosidase/isolation & purification
3.
Braz. arch. biol. technol ; 54(1): 141-148, Jan.-Feb. 2011. graf, tab
Article in English | LILACS | ID: lil-576770

ABSTRACT

Fungi collected from Brazilian soil and decomposing plants were screened for pectinase production. R. microsporus var. rhizopodiformis was the best producer and was selected to evaluate the pectic enzyme production under several nutritional and environmental conditions. The pectinase production was studied at 40ºC, under 28 carbon sources-supplemented medium. The inducer effect of several agro-industrial residues such as sugar cane bagasse, wheat flour and corncob on polygalacturonase (PG) activity was 4-, 3- and 2-fold higher than the control (pectin). In glucose-medium, a constitutive pectin lyase (PL) activity was detected. The results demonstrated that R. microsporus produced high levels of PG (57.7 U/mg) and PL (88.6 U/mg) in lemon peel-medium. PG had optimum temperature at 65 ºC and was totally stable at 55 ºC for 90 min. Half-life at 70 ºC was 68 min. These results suggested that the versatility of waste carbon sources utilization by R. microsporus, produce pectic enzymes, which could be useful to reduce production costs and environmental impacts related to the waste disposal.

4.
Braz. j. microbiol ; 40(3): 612-622, Sept. 2009.
Article in English | LILACS | ID: lil-522482

ABSTRACT

The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50ºC while the extraand intracellular enzymes produced in SbmF exhibited maximal activities at 60ºC. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50ºC.


O fungo filamentoso Aspergillus caespitosus foi um bom produtor de invertases intracelular e extracelular em fermentação submersa (FSbm) ou em estado sólido (FES), usando resíduos agroindustriais como fonte de carbono, sendo que para ambas as condições de cultivo, a maior produtividade foi obtida empregandose farelo de trigo. A produção da forma extracelular em FES mantido a 30ºC, por 72 horas, foi aumentada usandose solução de sais SR (1:1, m/v) para umidificar o substrato, sendo aproximadamente 5,5 vezes maior se comparada a FSbm (Meio Khanna) com a mesma fonte de carbono. Entretanto, a mistura de farelo de trigo e farinha de aveia em FES levou a um aumento de 2,2 vezes na produção enzimática se comparada ao uso isolado do farelo de trigo. A produção enzimática, em ambas as condições de cultivo, foi afetada pela adição suplementar de fontes de nitrogênio e fosfato. A adição de glicose em FSbm e em FES promoveu a diminuição da enzima extracelular, mas favoreceu um acúmulo intracelular de 35 vezes maior. A temperatura ótima de atividade para as invertases produzidas em FES e em FSbm foi de 50ºC e 60ºC, respectivamente, sendo estáveis a 50ºC por mais de 60 minutos. Todas as formas enzimáticas apresentaram atividade máxima em uma faixa de pH de 4.0-6.0.

SELECTION OF CITATIONS
SEARCH DETAIL